### § 230.42

the transition to upland. The margin between wetland and open water can best be established by specialists familiar with the local environment, particularly where emergent vegetation merges with submerged vegetation over a broad area in such places as the lateral margins of open water, headwaters, rainwater catch basins, and groundwater seeps. The landward margin of wetlands also can best be identified by specialists familiar with the local environment when vegetation from the two regions merges over a broad area.

(3) Wetland vegetation consists of plants that require saturated soils to survive (obligate wetland plants) as well as plants, including certain trees, that gain a competitive advantage over others because they can tolerate prolonged wet soil conditions and their competitors cannot. In addition to plant populations and communities, wetlands are delimited by hydrological and physical characteristics of the en-These characteristics vironment. should be considered when information about them is needed to supplement information available about vegetation, or where wetland vegetation has been removed or is dormant.

(b) Possible loss of values: The discharge of dredged or fill material in wetlands is likely to damage or destroy habitat and adversely affect the biological productivity of wetlands ecosystems by smothering, by dewatering, by permanently flooding, or by altering substrate elevation or periodicity of water movement. The addition of dredged or fill material may destroy wetland vegetation or result in advancement of succession to dry land species. It may reduce or eliminate nutrient exchange by a reduction of the system's productivity, or by altering current patterns and velocities. Disruption or elimination of the wetland system can degrade water quality by obstructing circulation patterns that flush large expanses of wetland systems, by interfering with the filtration function of wetlands, or by changing the aguifer recharge capability of a wetland. Discharges can also change the wetland habitat value for fish and wildlife as discussed in subpart D. When disruptions in flow and circulation patterns occur, apparently minor loss of wetland acreage may result in major losses through secondary impacts. Discharging fill material in wetlands as part of municipal, industrial or recreational development may modify the capacity of wetlands to retain and store floodwaters and to serve as a buffer zone shielding upland areas from wave actions, storm damage and erosion.

#### § 230.42 Mud flats.

(a) Mud flats are broad flat areas along the sea coast and in coastal rivers to the head of tidal influence and in inland lakes, ponds, and riverine systems. When mud flats are inundated, wind and wave action may resuspend bottom sediments. Coastal mud flats are exposed at extremely low tides and inundated at high tides with the water table at or near the surface of the substrate. The substrate of mud flats contains organic material and particles smaller in size than sand. They are either unvegetated or vegetated only by algal mats.

(b) Possible loss of values: The discharge of dredged or fill material can cause changes in water circulation patterns which may permanently flood or dewater the mud flat or disrupt periodic inundation, resulting in an increase in the rate of erosion or accretion. Such changes can deplete or eliminate mud flat biota, foraging areas, and nursery areas. Changes in inundation patterns can affect the chemical and biological exchange and decomposition process occurring on the mud flat and change the deposition of suspended material affecting the productivity of the area. Changes may reduce the mud flat's capacity to dissipate storm surge runoff.

## §230.43 Vegetated shallows.

- (a) Vegetated shallows are permanently inundated areas that under normal circumstances support communities of rooted aquatic vegetation, such as turtle grass and eelgrass in estuarine or marine systems as well as a number of freshwater species in rivers and lakes.
- (b) Possible loss of values: The discharge of dredged or fill material can

smother vegetation and benthic organisms. It may also create unsuitable conditions for their continued vigor by: (1) Changing water circulation patterns: (2) releasing nutrients that increase undesirable algal populations; (3) releasing chemicals that adversely affect plants and animals; (4) increasing turbidity levels, thereby reducing light penetration and hence photosynthesis; and (5) changing the capacity of a vegetated shallow to stabilize bottom materials and decrease channel shoaling. The discharge of dredged or fill material may reduce the value of vegetated shallows as nesting, spawning, nursery, cover, and forage areas, as well as their value in protecting shorelines from erosion and wave actions. It may also encourage the growth of nuisance vegetation.

#### § 230.44 Coral reefs.

(a) Coral reefs consist of the skeletal deposit, usually of calcareous or silicaceous materials, produced by the vital activities of anthozoan polyps or other invertebrate organisms present in growing portions of the reef.

(b) Possible loss of values: The discharge of dredged or fill material can adversely affect colonies of reef building organisms by burying them, by releasing contaminants such as hydrocarbons into the water column, by reducing light penetration through the water, and by increasing the level of suspended particulates. Coral organisms are extremely sensitive to even slight reductions in light penetration or increases in suspended particulates. These adverse effects will cause a loss of productive colonies which in turn provide habitat for many species of highly specialized aquatic organisms.

## § 230.45 Riffle and pool complexes.

(a) Steep gradient sections of streams are sometimes characterized by riffle and pool complexes. Such stream sections are recognizable by their hydraulic characteristics. The rapid movement of water over a coarse substrate in riffles results in a rough flow, a turbulent surface, and high dissolved oxygen levels in the water. Pools are deeper areas associated with riffles. Pools are characterized by a slower stream velocity, a steaming flow, a smooth

surface, and a finer substrate. Riffle and pool complexes are particularly valuable habitat for fish and wildlife.

(b) Possible loss of values: Discharge of dredged or fill material can eliminate riffle and pool areas by displacement, hydrologic modification, or sedimentation. Activities which affect riffle and pool areas and especially riffle/ pool ratios, may reduce the aeration and filtration capabilities at the discharge site and downstream, may reduce stream habitat diversity, and may retard repopulation of the disposal site and downstream waters through sedimentation and the creation of unsuitable habitat. The discharge of dredged or fill material which alters stream hydrology may cause scouring or sedimentation of riffles and pools. Sediinduced mentation through hydrological modification or as a direct result of the deposition of unconsolidated dredged or fill material may clog riffle and pool areas, destroy habitats, and create anaerobic conditions. Eliminating pools and meanders by the discharge of dredged or fill material can reduce water holding capacity of streams and cause rapid runoff from a watershed. Rapid runoff can deliver large quantities of flood water in a short time to downstream areas resulting in the destruction of natural habitat, high property loss, and the need for further hydraulic modification.

NOTE: Possible actions to minimize adverse impacts on site or material characteristics can be found in subpart H.

## Subpart F—Potential Effects on Human Use Characteristics

NOTE: The effects described in this subpart should be considered in making the factual determinations and the findings of compliance or non-compliance in subpart B.

# § 230.50 Municipal and private water supplies.

- (a) Municipal and private water supplies consist of surface water or ground water which is directed to the intake of a municipal or private water supply system.
- (b) Possible loss of values: Discharges can affect the quality of water supplies with respect to color, taste, odor,